This involves two main changes from the previous behavior. First,
when we set a bit in the visibility map, emit a new WAL record of type
XLOG_HEAP2_VISIBLE. Replay sets the page-level PD_ALL_VISIBLE bit and
the visibility map bit. Second, when inserting, updating, or deleting
a tuple, we can no longer get away with clearing the visibility map
bit after releasing the lock on the corresponding heap page, because
an intervening crash might leave the visibility map bit set and the
page-level bit clear. Making this work requires a bit of interface
refactoring.
In passing, a few minor but related cleanups: change the test in
visibilitymap_set and visibilitymap_clear to throw an error if the
wrong page (or no page) is pinned, rather than silently doing nothing;
this case should never occur. Also, remove duplicate definitions of
InvalidXLogRecPtr.
Patch by me, review by Noah Misch.
"all tuples visible" flag in heap page headers. The flag update *must*
be applied before calling XLogInsert, but heap_update and the tuple
moving routines in VACUUM FULL were ignoring this rule. A crash and
replay could therefore leave the flag incorrectly set, causing rows
to appear visible in seqscans when they should not be. This might explain
recent reports of data corruption from Jeff Ross and others.
In passing, do a bit of editorialization on comments in visibilitymap.c.
heap page, where a set bit indicates that all tuples on the page are
visible to all transactions, and the page therefore doesn't need
vacuuming. It is stored in a new relation fork.
Lazy vacuum uses the visibility map to skip pages that don't need
vacuuming. Vacuum is also responsible for setting the bits in the map.
In the future, this can hopefully be used to implement index-only-scans,
but we can't currently guarantee that the visibility map is always 100%
up-to-date.
In addition to the visibility map, there's a new PD_ALL_VISIBLE flag on
each heap page, also indicating that all tuples on the page are visible to
all transactions. It's important that this flag is kept up-to-date. It
is also used to skip visibility tests in sequential scans, which gives a
small performance gain on seqscans.