running gcc and HP's cc with warnings cranked way up. Signed vs unsigned
comparisons, routines declared static and then defined not-static,
that kind of thing. Tedious, but perhaps useful...
represent the result of a binary-compatible type coercion. At runtime
it just evaluates its argument --- but during type resolution, exprType
will pick up the output type of the RelabelType node instead of the type
of the argument. This solves some longstanding problems with dropped
type coercions, an example being 'select now()::abstime::int4' which
used to produce date-formatted output, not an integer, because the
coercion to int4 was dropped on the floor.
accesses versus sequential accesses, a (very crude) estimate of the
effects of caching on random page accesses, and cost to evaluate WHERE-
clause expressions. Export critical parameters for this model as SET
variables. Also, create SET variables for the planner's enable flags
(enable_seqscan, enable_indexscan, etc) so that these can be controlled
more conveniently than via PGOPTIONS.
Planner now estimates both startup cost (cost before retrieving
first tuple) and total cost of each path, so it can optimize queries
with LIMIT on a reasonable basis by interpolating between these costs.
Same facility is a win for EXISTS(...) subqueries and some other cases.
Redesign pathkey representation to achieve a major speedup in planning
(I saw as much as 5X on a 10-way join); also minor changes in planner
to reduce memory consumption by recycling discarded Path nodes and
not constructing unnecessary lists.
Minor cleanups to display more-plausible costs in some cases in
EXPLAIN output.
Initdb forced by change in interface to index cost estimation
functions.
SELECT a FROM t1 tx (a);
Allow join syntax, including queries like
SELECT * FROM t1 NATURAL JOIN t2;
Update RTE structure to hold column aliases in an Attr structure.
fields in JoinPaths --- turns out that we do need that after all :-(.
Also, rearrange planner so that only one RelOptInfo is created for a
particular set of joined base relations, no matter how many different
subsets of relations it can be created from. This saves memory and
processing time compared to the old method of making a bunch of RelOptInfos
and then removing the duplicates. Clean up the jointree iteration logic;
not sure if it's better, but I sure find it more readable and plausible
now, particularly for the case of 'bushy plans'.
SELECT DISTINCT ON (expr [, expr ...]) targetlist ...
and there is a check to make sure that the user didn't specify an ORDER BY
that's incompatible with the DISTINCT operation.
Reimplement nodeUnique and nodeGroup to use the proper datatype-specific
equality function for each column being compared --- they used to do
bitwise comparisons or convert the data to text strings and strcmp().
(To add insult to injury, they'd look up the conversion functions once
for each tuple...) Parse/plan representation of DISTINCT is now a list
of SortClause nodes.
initdb forced by querytree change...
pghackers discussion of 5-Jan-2000. The amopselect and amopnpages
estimators are gone, and in their place is a per-AM amcostestimate
procedure (linked to from pg_am, not pg_amop).
choke on relation or attribute names containing spaces, quotes, or other
special characters. This fixes a TODO item. It also forces initdb,
since stored rule strings change.
mentioned in FROM but not elsewhere in the query: such tables should be
joined over anyway. Aside from being more standards-compliant, this allows
removal of some very ugly hacks for COUNT(*) processing. Also, allow
HAVING clause without aggregate functions, since SQL does. Clean up
CREATE RULE statement-list syntax the same way Bruce just fixed the
main stmtmulti production.
CAUTION: addition of a field to RangeTblEntry nodes breaks stored rules;
you will have to initdb if you have any rules.
sort order down into planner, instead of handling it only at the very top
level of the planner. This fixes many things. An explicit sort is now
avoided if there is a cheaper alternative (typically an indexscan) not
only for ORDER BY, but also for the internal sort of GROUP BY. It works
even when there is no other reason (such as a WHERE condition) to consider
the indexscan. It works for indexes on functions. It works for indexes
on functions, backwards. It's just so cool...
CAUTION: I have changed the representation of SortClause nodes, therefore
THIS UPDATE BREAKS STORED RULES. You will need to initdb.
store all ordering information in pathkeys lists (which are now lists of
lists of PathKeyItem nodes, not just lists of lists of vars). This was
a big win --- the code is smaller and IMHO more understandable than it
was, even though it handles more cases. I believe the node changes will
not force an initdb for anyone; planner nodes don't show up in stored
rules.
> >
> > was implemented by Jan Wieck.
> > His work is for ascending order cases.
> >
> > Here is a patch to prevent sorting also in descending
> > order cases.
> > Because I had already changed _bt_first() to position
> > backward correctly before v6.5,this patch would work.
> >
Hiroshi Inoue
Inoue@tpf.co.jp
identified by Hiroshi (incorrect cost attributed to OR clauses
after multiple passes through set_rest_selec()). I think the code
was trying to allow selectivities of OR subclauses to be passed in
from outside, but noplace was actually passing any useful data, and
set_rest_selec() was passing wrong data.
Restructure representation of "indexqual" in IndexPath nodes so that
it is the same as for indxqual in completed IndexScan nodes: namely,
a toplevel list with an entry for each pass of the index scan, having
sublists that are implicitly-ANDed index qual conditions for that pass.
You don't want to know what the old representation was :-(
Improve documentation of OR-clause indexscan functions.
Remove useless 'notclause' field from RestrictInfo nodes. (This might
force an initdb for anyone who has stored rules containing RestrictInfos,
but I do not think that RestrictInfo ever appears in completed plans.)
so remove them from MergeJoin node. Hack together a partial
solution for commuted mergejoin operators --- yesterday
a mergejoin int4 = int8 would crash if the planner decided to
commute it, today it works. The planner's representation of
mergejoins really needs a rewrite though.
Also, further testing of mergejoin ops in opr_sanity regress test.
INTERSECT and EXCEPT is available for postgresql-v6.4!
The patch against v6.4 is included at the end of the current text
(in uuencoded form!)
I also included the text of my Master's Thesis. (a postscript
version). I hope that you find something of it useful and would be
happy if parts of it find their way into the PostgreSQL documentation
project (If so, tell me, then I send the sources of the document!)
The contents of the document are:
-) The first chapter might be of less interest as it gives only an
overview on SQL.
-) The second chapter gives a description on much of PostgreSQL's
features (like user defined types etc. and how to use these features)
-) The third chapter starts with an overview of PostgreSQL's internal
structure with focus on the stages a query has to pass (i.e. parser,
planner/optimizer, executor). Then a detailed description of the
implementation of the Having clause and the Intersect/Except logic is
given.
Originally I worked on v6.3.2 but never found time enough to prepare
and post a patch. Now I applied the changes to v6.4 to get Intersect
and Except working with the new version. Chapter 3 of my documentation
deals with the changes against v6.3.2, so keep that in mind when
comparing the parts of the code printed there with the patched sources
of v6.4.
Here are some remarks on the patch. There are some things that have
still to be done but at the moment I don't have time to do them
myself. (I'm doing my military service at the moment) Sorry for that
:-(
-) I used a rewrite technique for the implementation of the Except/Intersect
logic which rewrites the query to a semantically equivalent query before
it is handed to the rewrite system (for views, rules etc.), planner,
executor etc.
-) In v6.3.2 the types of the attributes of two select statements
connected by the UNION keyword had to match 100%. In v6.4 the types
only need to be familiar (i.e. int and float can be mixed). Since this
feature did not exist when I worked on Intersect/Except it
does not work correctly for Except/Intersect queries WHEN USED IN
COMBINATION WITH UNIONS! (i.e. sometimes the wrong type is used for the
resulting table. This is because until now the types of the attributes of
the first select statement have been used for the resulting table.
When Intersects and/or Excepts are used in combination with Unions it
might happen, that the first select statement of the original query
appears at another position in the query which will be executed. The reason
for this is the technique used for the implementation of
Except/Intersect which does a query rewrite!)
NOTE: It is NOT broken for pure UNION queries and pure INTERSECT/EXCEPT
queries!!!
-) I had to add the field intersect_clause to some data structures
but did not find time to implement printfuncs for the new field.
This does NOT break the debug modes but when an Except/Intersect
is used the query debug output will be the already rewritten query.
-) Massive changes to the grammar rules for SELECT and INSERT statements
have been necessary (see comments in gram.y and documentation for
deatails) in order to be able to use mixed queries like
(SELECT ... UNION (SELECT ... EXCEPT SELECT)) INTERSECT SELECT...;
-) When using UNION/EXCEPT/INTERSECT you will get:
NOTICE: equal: "Don't know if nodes of type xxx are equal".
I did not have time to add comparsion support for all the needed nodes,
but the default behaviour of the function equal met my requirements.
I did not dare to supress this message!
That's the reason why the regression test for union will fail: These
messages are also included in the union.out file!
-) Somebody of you changed the union_planner() function for v6.4
(I copied the targetlist to new_tlist and that was removed and
replaced by a cleanup of the original targetlist). These chnages
violated some having queries executed against views so I changed
it back again. I did not have time to examine the differences between the
two versions but now it works :-)
If you want to find out, try the file queries/view_having.sql on
both versions and compare the results . Two queries won't produce a
correct result with your version.
regards
Stefan