mirror of
https://github.com/csharpee/Map-Projections.git
synced 2025-12-31 00:01:41 -05:00
I've used that reference before, haven't I? In any case, I have successfully transfered Waterman to a new Octohedral class that is far more generalisable than the last one. I now intend to start moving Cahill-Keyes, and coding in Cahill-Rus, Cahill-Concialdi, and the detachment of Antarctica. The end goal: more and better octohedral maps in my collection.
199 lines
6.7 KiB
Java
199 lines
6.7 KiB
Java
/**
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2017 Justin Kunimune
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
package maps;
|
|
|
|
import maps.Projection.Property;
|
|
|
|
/**
|
|
* A class of maps that use octohedral octants. Very similar to Polyhedral, but much faster since
|
|
* it takes advantage of the fact that everything is orthogonal.
|
|
*
|
|
* @author jkunimune
|
|
*/
|
|
public class Octohedral {
|
|
|
|
public static final Projection WATERMAN = new OctohedralProjection(
|
|
"Waterman Butterfly", "A simple Cahill-esque octohedral map arrangement, with Antarctica left on.",
|
|
2*Math.sqrt(3), (Math.sqrt(3)-1)/2, 0b1010, Property.COMPROMISE, 3,
|
|
Configuration.BUTTERFLY) {
|
|
|
|
protected double[] faceProject(double lat, double lon) {
|
|
return Waterman.faceProject(lat, lon);
|
|
}
|
|
|
|
protected double[] faceInverse(double x, double y) {
|
|
return Waterman.faceInverse(x, y);
|
|
}
|
|
};
|
|
|
|
|
|
|
|
private static abstract class OctohedralProjection extends Projection {
|
|
|
|
private final double size;
|
|
private Configuration config;
|
|
|
|
|
|
public OctohedralProjection(String name, String desc, double altitude, double cutSize,
|
|
int fisc, Property property, int rating, Configuration config) {
|
|
super(name, desc,
|
|
config.fullWidth*altitude-config.cutWidth*cutSize,
|
|
config.fullHeight*altitude-config.cutHeight*cutSize, fisc,
|
|
(cutSize == 0) ? Type.OCTOHEDRAL : Type.TETRADECAHEDRAL, property, rating);
|
|
this.size = altitude;
|
|
this.config = config;
|
|
}
|
|
|
|
|
|
protected abstract double[] faceProject(double lat, double lon);
|
|
|
|
protected abstract double[] faceInverse(double x, double y);
|
|
|
|
|
|
public double[] project(double lat, double lon) {
|
|
double[] octant = config.project(lat, lon); //octant properties
|
|
double x0 = octant[0]*size, y0 = octant[1]*size, tht0 = octant[2], lon0 = octant[3];
|
|
|
|
double[] coords = this.faceProject(Math.abs(lat), Math.abs(lon-lon0));
|
|
double xMj = coords[0], yMj = coords[1]; //relative octant coordinates (Mj stands for "Mary Jo Graca")
|
|
|
|
if (lat < 0) //reflect the southern hemisphere over the equator
|
|
xMj = 2*size - xMj;
|
|
if (lon-lon0 < 0)
|
|
yMj = -yMj;
|
|
|
|
return new double[] {
|
|
x0 + Math.sin(tht0)*xMj + Math.cos(tht0)*yMj,
|
|
y0 - Math.cos(tht0)*xMj + Math.sin(tht0)*yMj + config.fullHeight*size/2 };
|
|
}
|
|
|
|
|
|
public double[] inverse(double x, double y) {
|
|
y = y - config.fullHeight*size/2; //measure from extrapolated top of map, not centre
|
|
double[] octant = config.inverse(x/size, y/size);
|
|
if (octant == null) return null;
|
|
double lon0 = octant[0], x0 = size*octant[1], y0 = size*octant[2], tht0 = octant[3];
|
|
|
|
double xMj = Math.sin(tht0)*(x-x0) - Math.cos(tht0)*(y-y0);
|
|
double yMj = Math.cos(tht0)*(x-x0) + Math.sin(tht0)*(y-y0);
|
|
|
|
double[] coords = this.faceInverse(Math.min(xMj, 2*size-xMj), Math.abs(yMj));
|
|
if (coords == null) return null;
|
|
double lat = coords[0], lon = coords[1];
|
|
|
|
return new double[] { Math.signum(size-xMj)*lat, Math.signum(yMj)*lon + lon0 };
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
private enum Configuration {
|
|
|
|
BUTTERFLY(4, 2, 4/Math.sqrt(3), Math.sqrt(3)) { //the classic four octants splayed out in a nice butterfly shape, with Antarctica divided and attached
|
|
|
|
private final double Y_OFFSET = -1/Math.sqrt(3);
|
|
|
|
public double[] project(double lat, double lon) {
|
|
if (Math.abs(lon) > Math.PI && lat < 0) {
|
|
double sign = Math.signum(lon);
|
|
return new double[] {sign, 2/Math.sqrt(3), sign*Math.PI/6, sign*Math.PI};
|
|
}
|
|
double centralMerid = Math.floor(lon/(Math.PI/2))*Math.PI/2 + Math.PI/4;
|
|
return new double[] { 0, Y_OFFSET, centralMerid*2/3., centralMerid };
|
|
}
|
|
|
|
public double[] inverse(double x, double y) {
|
|
if (y > (1-Math.abs(x))/Math.sqrt(3)) {
|
|
double sign = Math.signum(x);
|
|
return new double[] { sign*5*Math.PI/4, sign, 2/Math.sqrt(3), sign*Math.PI/6 };
|
|
}
|
|
double tht = Math.atan2(x, -y+Y_OFFSET);
|
|
if (Math.abs(tht) > 5*Math.PI/6)
|
|
return null;
|
|
double centralAngle = Math.floor(tht/(Math.PI/3))*Math.PI/3 + Math.PI/6;
|
|
return new double[] { centralAngle*3/2., 0, Y_OFFSET, centralAngle };
|
|
}
|
|
},
|
|
|
|
|
|
M_PROFILE(4, 0, Math.sqrt(3), Math.sqrt(3)) {
|
|
|
|
public double[] project(double lat, double lon) {
|
|
// TODO: Implement this
|
|
return null;
|
|
}
|
|
|
|
public double[] inverse(double x, double y) {
|
|
// TODO: Implement this
|
|
return null;
|
|
} //The more compact zigzag configuration with Antarctica divided and attached
|
|
|
|
},
|
|
|
|
|
|
M_W_S_POLE(4, 0, 3.5/Math.sqrt(3), 1.5*Math.sqrt(3)) {
|
|
|
|
public double[] project(double lat, double lon) {
|
|
// TODO: Implement this
|
|
return null;
|
|
}
|
|
|
|
public double[] inverse(double x, double y) {
|
|
// TODO: Implement this
|
|
return null;
|
|
} //Keyes's current configuration, with Antarctica reassembled in the center
|
|
},
|
|
|
|
|
|
BAT_SHAPE(2*Math.sqrt(3), 0, 2, 0) {
|
|
|
|
public double[] project(double lat, double lon) {
|
|
// TODO: Implement this
|
|
return null;
|
|
}
|
|
|
|
public double[] inverse(double x, double y) {
|
|
// TODO: Implement this
|
|
return null;
|
|
} //Luca Concialdi's obscure "Bat" arrangement that I liked. I don't think it's the best map possible as Luca does, but I do think it's quite neat
|
|
};
|
|
|
|
|
|
public final double fullWidth, cutWidth, fullHeight, cutHeight;
|
|
|
|
private Configuration(double fullWidth, double cutWidth,
|
|
double fullHeight, double cutHeight) {
|
|
this.fullWidth = fullWidth;
|
|
this.cutWidth = cutWidth;
|
|
this.fullHeight = fullHeight;
|
|
this.cutHeight = cutHeight;
|
|
}
|
|
|
|
public abstract double[] project(double lat, double lon); //calculate the x, y, rotation, and central meridian for this quadrant
|
|
public abstract double[] inverse(double x, double y); //calculate the central meridian, x, y, and rotation for this quadrant
|
|
}
|
|
|
|
}
|